
Deux indices courants sont la probabilité de détection (POD) et le rapport de fausses alarmes (FAR).
Dans notre exemple, la POD (ou le taux de réussites) indique la proportion de cas de crues observées qui avaient été prévues. À partir du tableau de contingence à double entrée, la POD se calcule comme suit: a/(a+c). La POD peut aller de 0 (pire cas) à 1 (perfection), qui correspond à 100 %.
Dans notre exemple, le FAR indique la proportion de cas de crues prévues qui n'ont pas été observées. Il se calcule comme suit: b/(a+b). La valeur parfaite est 0 et la pire valeur possible est 1.
D'autres indices couramment calculés sont l'indice de réussite critique (CSI), la probabilité de fausse détection (POFD) et le biais.
Le CSI est parfois appelé « indice de menace ». Lorsque deux catégories sont définies, à savoir « crue » ou « pas de crue », le CSI (ou l'indice de menace) est le taux de prévisions de crues confirmées par rapport à tous les cas de crues (observées ou prévues). Cet indice permet de faire ressortir la capacité de prévoir des phénomènes rares, en évitant que l'indice ne soit biaisé par le nombre de cas où un phénomène qui n'avait pas été prévu n'est pas intervenu. Par exemple, le CSI peut être utile lors de la vérification de crues majeures.
Sur le tableau de contingence, le CSI se calcule comme suit: a/(a+b+c). La valeur peut aller de 0 (pire cas) à 1 (perfection).
La POFD rend compte de la proportion de cas où une crue avait été prévue, mais n'a pas été observée. Elle se calcule comme suit: b/(b+d). La valeur peut aller de 0 (perfection) à 1 (pire cas). Ce taux est parfois appelé taux de fausses alarmes et ne doit pas être confondu avec le rapport de fausses alarmes.
En l'occurrence, le biais correspond au nombre total de crues prévues divisé par le total des crues observées, ou (a+b)/(a+c). La valeur peut aller de zéro à l'infini. 1 est la valeur parfaite. Le 1 indique l'absence de tout biais. Autrement dit, le nombre de crues observées est le même que le nombre de crues prévues. Les valeurs inférieures à 1 indiquent un faible biais: le nombre de crues observées est supérieur au nombre de crues prévues. Les valeurs supérieures à 1 indiquent un biais élevé: le nombre de crues qui ont été prévues est supérieur au nombre de crues observées.
| Indice | Tableau | Formule | Critères | Description |
|---|---|---|---|---|
| Probabilité de détection (taux de réussites) | POD | POD = a/(a+c) | de 0 (pire cas) à 1 (perfection) | Proportion de crues observées qui avaient été prévues |
| Rapport de fausses alarmes (FAR) | FAR | FAR = b/(a+b) | de 0 (perfection) à 1 (pire cas) | Proportion de crues prévues qui n'ont pas été observées |
| Indice de réussite critique | CSI | CSI = a/(a+b+c) | de 0 (pire cas) à 1 (perfection) | Proportion de crues correctement prévues par rapport à toutes les crues, prévues ou observées. |
| Probabilité de fausse détection (taux de fausses alarmes) | POFD | POFD = b/(b+d) | de 0 (perfection) à 1 (pire cas) | Proportion de crues qui avaient été prévues mais qui n'ont pas été observées |
| Biais | Biais = (a+b)/(a+c) | de 0 (faible biais) à l'infini (biais élevé) en passant par 1 (perfection) | Ratio de toutes les crues prévues sur toutes les crues observées |
Prenons notre tableau de contingence pour les catégories « crue » (« Oui ») et « pas de crue » (« Non »)
Quelle est la valeur des indices suivants?
Choisissez la bonne réponse pour chacun.